
DISTRIBUTION STATEMENT A: Distribution approved for public release; distribution is unlimited. 
 
 

Optimizing Machine Learning Algorithms  
For Hyperspectral Very Shallow Water (VSW) Products 

 
W. Paul Bissett 

Florida Environmental Research Institute 
PO Box 292397 

Tampa, FL 33687 USA 
phone: (800) 928-6402 x102     fax: (800) 928-6402     email: pbissett@feriweb.org   

 
Award Number: N000140810622 
http://www.flenvironmnental.org  

http://www.onr.navy.mil/sci_tech/32/322/ocean_optics_biology.asp 
 

 
LONG-TERM GOALS 
 
This one-year effort will focus on the transition of FERI’s machine learning algorithms for 
HyperSpectral Imagery (HSI) in the VSW into a distributable code set.  This will provide a stable code 
platform for the application and transition of machine learning-based hyperspectral classification 
techniques into 6.3/6.4 programs.  
 
OBJECTIVES 
 
Our objective is to focus on three areas of application research and transitions.  First, we will transition 
our machine learning-based algorithms and computer code for the determination of bathymetry, 
bottom type, and water column Inherent Optical Properties from HyperSpectral Imagery (HSI) into a 
deliverable Message Passing Interface (MPI) program that may be easily used by other research and 
military operators.  Second, we will use this program to determine the impacts of the granularity of the 
classification database on the inversion bathymetry, bottom type, and IOPs.  Third, we will move 
beyond the use of single pixel HSI inversion to the use of spatial context-filtering to remove pixel-to-
pixel noise inherent in the HSI data. 
 
APPROACH 
 
Task 1 
 
In previous works, a Look-Up Table (LUT) algorithm was used in accurately predicting bathymetry 
(Mobley et al. 2002, Bissett et al. 2004, Bissett et al. 2005, Mobley et al. 2005, Lesser and Mobley, 
2008).  The LUT approach is a subset of a larger body of artificial intelligence work concerned with 
algorithms and techniques that “teach” machine to learn from the examination of data and rules.  This 
body of work is aptly called “machine learning” and some of its techniques include decision trees, 
genetic algorithms, and neural networks.  The LUT approach is a subset of the k-Nearest Neighbor 
(kNN) algorithm, which is in the family of supervised learning algorithms.   
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Our use of the kNN algorithm maps a single HSI remote sensing reflectance vector, Rrs(λ), onto a 
database of estimated Rrs(λ).  This database is created by providing the attributes of bathymetry, 
spectral bottom reflectance, and spectral IOPs to the radiative transfer routines of Ecolight (which is a 
high speed variant of Hydrolight, Mobley, 1994).  We select the classification of the measured Rrs 
vector based on the best match of measured Rrs(λ) to estimated Rrs(λ).  The LUT algorithm is based 
on a single best fit for our classification, i.e. k = 1.  However, more recent work suggested that we 
could achieve a better classification by selecting a larger number for k, e.g. k = 50 (Bissett et al. 
2006a).  This larger number for k provides better accuracy and precision, as well as provides us with 
the ability to create confidence intervals for our classifications of bathymetry.   
 
When classifying new spectra, the distance or angle between each measured spectrum and estimated 
spectrum in the database is calculated.  The k nearest neighbors to that spectra (those having the 
smallest distances or angles), are considered sufficiently qualified to predict the corresponding 
attributes of bathymetry, bottom type, and IOP set.  We have used the following metrics for the 
calculation of distance (Euclidean, Manhattan, Chebyshev, Canberra and Bray Curtis) and/or angle 
(Angular Separation and Correlation Coefficient).  In general, our applications suggest that the 
Manhattan distance and the Correlation Coefficient angle metrics to be the best metrics to use for this 
algorithm.  Once the set of nearest neighbors are determined, the attribute (e.g. bathymetry) of a pixel 
may be determined by a majority vote from the k nearest neighbor vectors.  In the event of a tie, a 
prediction is made randomly from amongst the majority classes. 
 
The computer code used in our creation of the estimated Rrs(λ) database and the spectral matching of 
the measured versus estimated Rrs(λ) is functional for scientific research; however it not well 
developed for transition for use by others in testing and evaluation applications.   
 
The tasks of this project are as follows: 
 
1) We will build upon our past research efforts to provide a Message Passing Interface 
(MPI) executable version of our kNN workbench for the inversion of hyperspectral imagery.   

2) The code from Task 1 to rapidly test the impacts of granularity of attribute selection on 
the accuracy and precision of bathymetry estimated from our kNN code and the HSI data from 
Horseshoe Reef (Bissett et al. 2006b).  

3) We will evaluate two types of context-filtering – (1) pre-filtering of the Rrs(λ) spectra 
before classification, and (2) context-filtering of the retrieved attributes after classification.   
 
This year’s work focused on Task 3 – context-filtering.  The first type of context-filtering seeks to 
reduce the noise in Rrs(λ) spectra by replacing the spectrum value at each wavelength with the median 
value of the spectra in a spatial area surrounding the pixel of interest, say a 3 x 3 grid of pixels centered 
on the one of interest.  This spatial filter is applied wavelength by wavelength.  At wavelengths where 
Rrs(λ) is mostly signal, the final spectrum will not change by much.  At wavelengths where Rrs(λ) is 
noisy, the noise in the surrounding pixels will tend to average out and the final spectrum values over 
the entire image area will be less noisy that the original.   
 
The second type of context-filtering involves post-processing the retrievals themselves, rather than the 
original image spectra.  In the case of real numbered attributes, such as bathymetry, we can apply a 
median filter to the retrieved depth.  For bottom type and IOP set, the way forward is less clear.  Each 
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of these attributes is assigned a type with a specific vector (or set of vectors in the case of IOPs) of 
spectral values.  How we filter “Dark Sediment” with “Sparse Vegetation” or “Highly absorbing and 
scattering waters #1” with “Case 1, chlorophyll a = 0.5 mg m-3” will be a challenge.  It may require 
some iterative solution that context-filters bathymetry first, and solves the kNN again using a 
constrained bathymetry solution approach.  It may also be highly dependent on the granularity study in 
Task 2.  These are the issues that we will address in this Task. 
 
WORK COMPLETED 
 
Task 3 starts with a baseline set of statistics with which to compare our spectral matching approaches 
to the “true” bathymetry measured with acoustical techniques.  In addition to previously used estimates 
(see below), we include a new estimation of “spikiness” in the retrieval of bathymetry from our 
spectrum matching techniques.  Spikiness, S, is defined in the depth estimates as follows.  For a given 
pixel (i,j) with retrieved depth z(i,j), the average depth of the 4 neighboring pixels is  
 

zavg4 = 0.25[z(i-1, j) + z(i+1, j) + z(i, j-1) + z(i, j+1)]. 
 
Spikiness, S(i,j), of the retrieved depth at (i,j) as the absolute percent difference in depth z(i,j) and 
zavg4, 
 

S(i,j) = 100 {|z(i,j) - zavg4|} over {zavg4} 
 
For example at a kNN=1 (a single value LUT retrieval), if retrieval z(i,j) = 5 m or 15 m, and zavg4 = 
10 m, then S(i,j) = 50%.  Note that a linearly sloping bottom is the same as a level bottom as regards 
the value of zavg4.  Thus a change in depth from one pixel to the next because of a sloping bottom is 
not recorded as spikiness.  This metric is best suited for detecting a single spiky pixel.  However, if a 
group of pixels is spiky, then some of the spiky pixels may be included in the zavg4 value, and the true 
spikiness may be underestimated for pixel (i,j).  Likewise, a sharp change in bottom depth, e.g., due to 
a coral head, may be recorded as a depth spike even though the LUT retrieval is correct. 
 
Other statistical measures for “goodness of fit” from previous efforts include – 
 

1. The average percent difference in LUT vs acoustic depths (a negative/positive value means 
that the LUT depths are on average shallower/deeper than the acoustic depths) 

2. The average difference in meters in LUT vs acoustic depths (a negative/positive value means 
that the LUT depths are on average shallower/deeper than the acoustic depths) 

3. The standard deviation in meters of the LUT vs acoustic depths 

4. The correlation coefficient, r2, between the LUT and acoustic depths 

5. The percent of pixels for which the LUT depth is within ±1m of the correct depth 

6. The percent of pixels for which the LUT depth is within ±25% of the correct depth 
 
The baseline for our comparison of various selections of spatial filtering parameters and kNN 
parameters is seen in Figures 1.  This figure show the bathymetry retrievals for unfiltered, kNN = 1 
(LUT), parameters of our spectrum matching algorithms.  In summary, we now have six quantitative 
measures of the overall accuracy of depth retrievals and two measures of the spikiness of depth 
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retrievals.  These metrics are used below to compare the effects of spatial smoothing of input Rrs 
spectra, of spatial smoothing of retrieved depths, and of the type of kNN analysis.  
 

 
 

Figure 1. A 2D plot of retrieved depths, with the actual LUT-retrieved depths binned into 2-m bins. 
Even with the binning, there is noticeable speckle in the deeper waters at the upper right. 

 
 
We created a matrix of combinations between for testing kNN, Rrs, and depth averaging yield a 3 x 3 x 
3 solution matrix of 27 different combinations for analysis.  The following list provides a brief 
summary of the results. 

 
1. kNN analysis does not help if the input Rrs  spectrum is bad 

2. Using the median of k = 30 depths gives slightly better signed depth errors than does the 
average of 30 depths 

3. Using the average of k = 30 depths gives somewhat less spikiness (smaller average S values, 
and fewer pixels with S > 25%) that does the median of k = 30 values 

4. Other goodness-of-fit metrics are about the same for the average and median of k = 30 values 

5. The average and median of k = 30 values give smaller signed depth errors (-0.8 to -2%) than 
does k = 1 (-7.0 to -7.4%), regardless of what smoothing is applied 

6. The k = 1 depths give a smaller standard deviation of the LUT vs acoustic depth errors than 
does either the average or median of k = 30 

7. smoothing of the retrieved depths reduces spikiness much more that does a corresponding 
(having the same value of n) smoothing of the Rrs  

8. The average of k = 30 values reduces both average and extreme spikiness more than does the 
median 

 
These results are very encouraging when compared to our baseline retrievals (Figures 4 – 7).  
However, there is no single “best” methodology that gives superior values for all error metrics.  
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Nevertheless, it appears that a reasonable recommendation (at least for the Horseshoe Reef image) is 
to:  
 

1. use the median of k = 30 values to estimate the depth at each pixel (although using the average 
of k = 30 is about the same), which will give the most accurate average signed depth retrievals 

2. definitely perform 3×3 or 5×5 spatial smoothing of the retrieved depths, which will greatly 
reduce the spikiness and thus further decrease the depth errors 

3. optionally also perform 3×3 or 5×5 spatial smoothing of the Rrs  spectra before doing the LUT 
matching (Figure 2 - 3) 

 
 

 
 

Figure 2. A 2D plot of retrieved depths, with the actual kNN-retrieved depths  
binned into 2-m bins and color-coded.  
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Figure 3. Goodness-of-fit results from kNN vs. acoustic depths for optional retrieval. 
 
 
IMPACT/APPLICATIONS 
 
This effort will deliver an application for testing and evaluating of our machine learning approaches to 
bathymetry estimation in Very Shallow Waters (VSW).  While it is being demonstrated on 
hyperspectral imagery, the techniques and computer code may be used with any set of spectral 
reflectance data.  As such the deliverables from this effort will allow other to create maps of depths, 
bottom types, and water clarity from a variety of airborne and space-based spectral sensors planned for 
operational deployment. 
 
RELATED PROJECTS 
 
This work is being conducted in conjunction with Dr. Curtis D. Mobley at Sequoia Scientific, Inc., 
who is funded under this effort for the collaboration as well as under other collaborative spectrum 
matching funding.  These techniques developed here are now being applied to imagery of Australian 
coastal waters in a comparison of several different hyperspectral remote sensing algorithms for a 
variety of environments.  That comparison study is being led by A. Dekker of CSIRO.  The kNN 
algorithms developed under this grant are being transition within an application appliance to be 
delivered to Naval Oceanographic Office (N00014-09-C-0553) and is be delivered October 2009. 
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